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Abstraci An exact. c1osed·form solution of the three·dimensional equations of elasticity is givcn
for vibrations of rectangular parallelepipeds with traction·free faces.

LAME POTENTIAL FUNCTIONS

The problem of finding exact, closed-form solutions of the three-dimensional equations of
linear elasticity, for steady vibrations of homogeneous, isotropic, rectangular parallelepipeds
with all faces free of traction, was introduced by Lame in 1852[1]. He exhibited a solution
of that type for a family of modes with locally equivoluminal deformation but, for the case
of coupled equivoluminal and dilatational deformations, he proposed a solution in which
normal components of traction remain on all six faces. Some progress was made toward
a solution with all faces traction free with the discovery, in 1960[2], of an exact, closed­
form solution for a family of coupled modes in bars of rectangular cross-section with the
four side-faces of the bars traction free. In this paper, that solution is extended to
accommodate a family of modes in rectangular parallelepipeds with all six faces free of
traction. Whereas the solution for the bars could be expressed in terms of three Lame
potential functions, 18 are required for the parallelepipeds, as follows:

cp = A 1 sin ~2X sin "/3Y sin (3Z + A 2sin ~3X sin "hY sin (3Z

+ A3sin~3xsin'13ysin(2z

Hx = B2sin~3xcos'llycos(3z + C3sin~3XCOS"13YCOS(lz

+ D1sin ~ IX cos '13YCOS '3Z + EI sin ~2X cos "13YCOS (2Z

+ FI sin~2XCOS"12YCOS(3Z

l1y = B3cos ~3X sin "13Y cos (lZ + C1 cos ~lX sin "13YCOS (3Z

+ D2cos~3xsin"11ycos(3Z + E2cos~2xsin"12ycos'3z

+ F2cos~3xsin"12ycos'2z

Hz = B1 cos ~l XCOS "13Y sin (3Z + C2cos ~3X cos "11Y sin (3Z

+ D3COS~3XCOS'/3ysin(lz + E3cos~3XCos"12ysin'2z

+ F3 cos ~2X cos "13Y sin (2 Z

in which a time-dependent factor eiOlI is omitted.
The Lame functions are governed by the equations

dV 2(H;x, Hy, Hz) + w 2(H;x, Hy,Hz) = 0
1423

(1)

(2)
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where VI and V 2 are the velocities of dilatational and equivoluminal waves, respectively, in
an infinite medium

V~ = J-L/p (3)

and ). and J.l are Lame's constants of elasticity, related to Poisson's ratio, v, in a form to
be employed subsequently

I - J.l/(A + 2J.l) = 1/2(1 - v) = K
2

.

Upon substituting eqn (1) in eqn (2) we find the requirements

e~ + ~~ + ,~ = e~ + ~~ + ,~ = e~ + ~~ + ,~ = w2/vf

e~ + ~f + C~ = e~ + ~~ + cf = ef + ~~ + n
= e~ + ~~ + C~ = e~ + ~~ + C~ = e~ + ~~ + ,~ = w2

/v~.

DISPLACEMENTS AND STRESSES

The components of displacement are related to the Lame functions according to

U = oqJ/ox + oHz/oy - oH/oz

V = oqJ/oy + oHjoz - oHz/ox

w = oqJ/oz + oH/ox - oHx/oy

whence

U= Ale2COse2xsin~3ysinC3z + (C I '3 - B1'13) cos e1x sin '13Y sin C3Z

+ A2e3cOSe3xsin~2ysinC3z + (D 2C3 - C2'1dcoSe3xsin~lysinC3z

+ A3e3COSe3xsin~3ysinC2z + (B3Cl - D3'13)COSe3xsin~3ysinClz

+ E2'3COse2xsin~2ysinC3z + F2C2cose3xsin'12ysinC2z

- E3~2COse3xsin~2ysinC2z - F3~3COse2Xsin'13ysinC2z

V = A2~2sine3xcos~2ysinC3z + (C2e3 - B2'3)sine3xcos~lysin'3z

+ A3'13sin~3xcos~3ysinC3z + (D 3e3 - C3Cdsine3xcos~3ysinClz

+ AI~3sin~2xcos~3ysinC3z + (Blel - DIC3)sin~lxcos~3ysinC3z

+ E3e3 sin e3X cos '12Y sin C2Z + F3e2 sin e2X cos '13Y sin C2Z

- E1C2 sin e2X cos ~3Y sin C2Z - F1C3 sin e2X cos ~2Y sin '3Z

(4)

(6)

w = A3'2 sin e3X sin ~3YCOS '2Z + (C3~3 - B3~3) sin e3X sin ~3YCOS CIZ

+ AI'3sin~2Xsin'13ycosC3Z + (D1'13 - Cl~dsin~lXsin'13ycosC3Z

+ A2C3sine3xsin~2ycosC3Z + (B2~1 - D2~3)sin~3xsin~lycosC3Z

+ El'13Sin~2Xsin'13ycos'iz + Fl'12Sin~2xsin~2ycosC3Z

- E2~2sin~2xsin~2ycosC3Z - F2e3sin~3Xsin'12ycos'2Z. (7)

The components of stress are calculated from the displacements by

(lxx = )..1 + 2J.lou/ox,

(I yy = 2.1 + 2J-Lov/oy,

(lyz = J1.(ow/oy + ov/oz)

(Ix. = J1.(ou/oz + ow/ox)
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u:: = A.~ + 2IJ.aw/az, (8)

where ~ = au/ax + av/ay + aw/az.
Then, the normal components of stress are given by

1J.-IUx;x = -[AI(~I - '7~ - (~)sin~2x + 2(C I(3 - BI'73)~1 sin~lx]sin'73ysin(3z

-[A 2('7i - 2'7~ + ~~ - n)sin~3x + 2E2(3~2sin~2x]sin'72ysin(3z

-[A3((i - 2(~ - '7~ + ~~)sin~3x - 2F3'73~2sin~2x]sin'73ysin(2z

-2[D2(3 - C2'71]~3sin~3xsin'7lysin(3z

-2[B3(1 - D3'73]~3sin~3Xsin'73ysin(lz

-2[F2(2 - E3'72]~3sin~3Xsin'72ysin(2z

IJ. - IUyy = - [A I(~I - 2~~ - (~ + '7~) sin '73Y - 2Fl(3'72 sin '72Y] sin ~2X sin (3Z

-[A 2('7i - n- ~~)sin'72Y + 2(C2~3 - B2(3)'71 Sin'7ly]sin~3xsin(3z

-[A 3((i - 2(~ + '7~ - ~~)sin'73Y + 2E3~3'72Sin'72y]sin~3xsin(2z

-2[D3~3 - C3(1]'73Sin~3Xsin'73ysin(lz

-2[BI~1 - DI(3]'73Sin~IXsin'73ysin(3z

- 2[F3~2 - E I(2]'73 sin ~2X sin '73Y sin (2 Z

IJ.-lu:: = -[Al(~i - 2~~ + (~- '7~)sin(3z + 2EI'73(2sin(2z]sin~2xsinl13Y

-[A 2(I1I - 211~ - ~~ + (~)sin(3z - 2F2~3(2sin(2z]sin~3Xsin'72Y

-[A3((i - '7~ - ~~)sin(2z + 2(C3'73 - B3~3KI sin(lz]sin~3xsinl13Y

- 2[D I'73 - C I~1](3 sin ~IX sin '73Y sin (3 Z

-2[B2'71 - D2~3](3sin~3Xsin'7lysin(3z

- 2[F1'72 - E2~2](3 sin ~2X sin '72Y sin (3Z (9)

and the tangential components of stress are given by

1J.-I Uy: = {2Al(3'73Sin~2x + [D,('7~ - n) + BI~I(3 - CI~I'73]sin~lx}cOS'73YCOS(3Z

+ {2A2(3'72Sin~3x - [E2~2'72 - F,('7~ - n)]sin~2x}cOS'72YCOS(3Z

+ {2A3(2'73Sin~3x + [F3~2(2 + EI('7~ - W]sin~2x}cOS'73YCOS(2Z

+ [B2('7I - (~) + C2~3(3 - D2~3'71] sin ~3X cos '7IY cos (3Z

+[C3('7~ - m+ D3~3(1 - B3~3'73]sin~3xeOS'73ycOS(lz

+(E3~3(2 - F2~3'72)sin~3xCOS'72YCOS(2Z

1J.-lu:X = {2AI~2(3sin'73Y + [FI'72~2 + E2(n - ~mSin'72y}coS~2XCOS(3Z

+{2A2~3(3sin'72Y + [D2((~ - ~~) + B2'71~3 - C2'71(3]sin'7ly}coS~3XCOS'3Z

+{2A3~3(2sin'73Y - [E3'12(2 - Fi(~ - ~mSin'72y}coS~3XCOS(2Z

+ [B3((I - ,~) + C3'13~3 - D3'13(I]COs~3Xsin'13ycos'IZ

+[Cl(n - ~i) + DI'13~1 - BI'13(3]COs~IXsin'73ycos'3Z

+(EI'73~2 - F3'13'2) cos ~2X sin '73YCOS '2Z

SAS 22/1:-0
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jJ.-1aXY = {2Al~21J3Sin'3Z - [El'2~2 - F3(~~ -1JDsin'2z}coS~2XCOS1J3Y

+ {2A2~31J2 sin '3Z + [F2'21J2 + E3(~~ - 1Jm sin '2Z}cos ~3X cos 1J2Y

+ {2A3~31J3Sin(2z + [D3(~~ -1J~) + B3(11J3 - C3'1~3]sin'lz}coS~3XCOS1J3Y

+[Bl(~i -1J~) + C1'31J3 - Dl'3~l]COS~lXCOS1J3ysin'3z

+[C2(~~ -1JD + D2'31Jl - B2'3~3]COS~3XCos1Jlysin'3z

(10)

BOUNDARY CONDITIONS

The conditions for the boundaries, x = ±a, y = ±b, Z = ±e of a rectangular
parallelepiped, to be traction free are

({xx = axy = axz = 0 on x= ±a
ayx = ayy = ayz = 0 on y= ±b
au = azy = azz = 0 on Z= ±e. (11 )

The tangential components of traction vanish on the boundaries if

~i = [(1t/2a, (12)

for i = I, 2, 3 and [j, mi' ni odd integers. These integers give the integral numbers of half
wavelengths of displacement between opposing faces of the body. From eqns (3)-(5) and
(12), we find a frequency ratio n given by

K
2n2 = Ii - [~ = a2(mr - m~)/b2 = a2(nr - nWc2

= [~ - [~ = a2(m~ - mWb2 = a2(n~ - n5)fc2

where

(13)

(14)

We note, from eqn (13), the requirements

Ii - g = [~ - [~,

and the results

mi - m~ = m~ - m~, nr - n~ = n~ - n~ (15)

(16)

Although the Lame functions in eqn (1) produce displacements antisymmetric with
respect to all three coordinate planes, symmetry with respect to any or all of the
coordinate planes would result from interchange of appropriate sines and cosines. Then the
corresponding odd integers, among Ii' mj, nj, would be replaced by even integers. Thus,
both the frequency, in eqn (13), and the dimensional ratios, in eqn (16), depend on differences
between the squares of two integers, say Pi and Qi' Qi > Pi' both odd or both even. Such
differences are positive integral multiples of 4
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Q~ - P~ =4NI I , N = 1,2,3 ... (17)

It was shown in Ref. [2] that all such Pi and Qi are given by

(18)

These results gave the integers eligible for use in Ref. [2], but here there is the additional
restriction, eqn (15). Thus, only those values of N are admissible that give at least two
pairs of integers, say Qi> P j and Qj, Pj' which satisfy

(19)

In the range 0 < N < 1000, only 34 values of N, as listed in Table 1, give Qand P, from
eqn (18), which satisfy eqn (19). One of them (N = 210) gives two such combinations and
another (N = 840) gives three.

For the boundary conditions on the normal components of traction to be satisfied,
the six expressions in brackets in each of (In' (I", (1%%, in eqn (9), must vanish on x = fa,
y = ±b, z = ±c, respectively. These conditions constitute a system of 18 simultaneous,
homogeneous equations on the 18 constants Al ... F3 , the solution of which is

A2 a23a3le13e21/32/13
Al = a32a13e23e3l/l2/23'

Bl/A 1 = -allc3ld2l/b. l ,

B2/A 2 = -a22cl2d32/b.2,

B3/A 3 = -a33c23dl3/b.3,

A 3 a3lel2/l3
Al = - al3e31/23

CdA I = -allb2ld3db.1

C2/A 2 = -a22b32d12/b.2

C3/A 3 = -a33bl3d23/b.3

provided that

DdA I = allb2lc3db. l ,

D2/A 2 = a22b32cl2/b.2,

D3/A 3 = a33bl3c23/b.3,

El/A l = -a3l/e3l,

F2/A 2 = -a12/el2,

E3/A 3 = -a23/e23,

b.l = bllC3ld2l + b2lClld31

b.2 = b22C12d32 + b33C22dl2

b.3 = b33C23d13 + bl3C33d23

Fl/A 1 = -a2d/2l

F2/A 2 = -a32/132

F3/A 3 = -a13/113
(20)

where

~(~ - I1~Xrh~ - ~) + rh~(m~ - ~)(I1~ - rh~)

+ l1~m - I1~XI1~ - rh~) + ~rh~l1~ = 0 (21)

and

~ = IJa, l1 i = nJc (22)

all = (Tf - rh~ -11~X-l)(/2-13)/2, bll = -2f1rh3, Cll = 21111

al2 = (rh~ - 2rh~ + ~ - 11~)( _1)(/3-12)/2, e12 = 21112
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a - (/1'2 2/1'2 n'2 + /1'.2)( 1)(m.1- m2)/2 r - 2m' Ii21 - I - 2 - 3 "3 - ,)21 - - 2 3

all = (mi - Ii~ - ~)( _1)(m2-m 1l/2, b22 = -2mln3' C22 = 2f3ml

a23 = (ni - 21i~ + m~ - ~)( _1)(mr m2)/2, e23 = 2f3m2

d23 = f3, C23 = -nl, b21 = fl, d21 = -113,123 = f2 , e21 = -n2

a31 = (ff - 2~ + n~ - m~)( _1)("3-"2)/2, e31 = 2m3n2

a32 = (mf - 2m~ - ~ + n~)( -1)<"3-"2)/2,132 = -2n3f3

an = (nf - m~ - ~)(_1)("2-"1)/2, b33 = -2n1f3' C33 = 2"'3n1

a31 = "'3' C31 = -f1, b32 = "'1' d32 = -f3, 131 = "'2' e32 = -f2· (23)

EXAMPLES

It remains only to select differences of squares of integers, from eqns (17) and (18), to
produce the frequencies according to eqn (13) and dimensional ratios according to eqn
(16)-subject to restrictions (15), as in Table 1, and, finally, eqn (21).

The density of modes and shapes of parallelepipeds, included in the solution, is low
in comparison with that in the solution for the bar in Ref. [2]. There, with no restriction
on length, the allowable ratio of width to thickness of a bar was the square root of the
ratio of any two of the Qr - Pr differences calculated from eqn (18). In the range°< N ~ 1000, there are 3551 such differences. But, in the present solution, only 37
combinations of two of them, as listed in Table 1, are allowed as a result of eqn (15). Three
such combinations are required for the Ii' mi' nj of any solution and the admissibility of
such triplets is severely restricted by eqn (21). That equation may be simplified by taking
anyone of the differences, say m~ - nL equal to zero. As a result, eqn (21) reduces to

(24)

and, since we have taken b2
/C

2 = mVn~, we find

(25)

Then, with eqn (16), we can write 2(lY/~ - 1) = m~/m~ - 1 = n~/n~ - I. Thesc relations
facilitate the selection of Ii> mj, nj from Table I or its extension to
higher N.

A few examples of modes in square and rectangular plates and bars are given below.

Square, thick plate:

N 1 = 30, II = 17, 12 = 13, 13 = 7

N2 = 540, m1 = 69, m2 = 51, m3 = 21

N3 = 540, n1 = 69, n2 = 51, n3 = 21

a2
: b2

: c2 = 1: 18: 18

,,202 = 120.
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Table I. 4N = Qf - pf = QJ - PJ,
P; = Qj

N Qi Pi Pj

6 7 5 I
24 14 10 2
30 17 13 7
54 21 15 3
60 23 17 7
84 31 25 17
96 28 20 4

120 34 26 14
150 35 25 5
180 49 41 31
210 47 37 23
210 41 29 I
216 42 30 6
240 46 34 14
270 51 39 21
294 49 35 7
330 71 61 49
336 62 50 34
384 56 40 8
480 68 52 28
486 63 45 9
504 79 65 47
540 69 51 21
546 97 85 71
600 70 50 10
630 73 53 17
720 98 82 62
726 77 55 II
750 85 65 35
756 93 75 51
840 127 113 97
1140 94 74 46
840 82 58 2
864 84 60 12
924 89 65 23
960 92 68 28
990 119 101 79

Square bar:

N I = 750, II = 85, 12 = 65, 13 = 35

N2 = 60, ml = 23, m2 = 17, m3= 7

N3 = 60, n l = 23, n2 = 17, n3 = 7

a
2 :b2

:c
2 = 25:2:2

,,2Q2(c2/a 2) = 240.

Rectangular bar:

N I = 30, II = 17, 12 = 13, 13 = 7

N2 = 60, ml = 23, m2 = 17, m3 = 7

N J = 540, n 1 = 69, n2 = 51, n3 = 21

a 2 :b2 :c2 = 1:2: 18

,,2Q2 = 120.

Rectangular plate:

N I = 750, II = 85, 12 = 65, 13 = 35

N2 = 540, ml = 69, m2 = 51, m3 = 21
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N 3 == 60, nl ==23, n2 =17, n3 == 7

a2 :b2 :c2 = 25:18:2

K
2n2(c 2/a 2

) = 240.

As mentioned earlier, some or all of the sines and cosines in the Lame functions may
be interchanged with the result that some or all of the Ii, mi' ni would change from odd
to even integers.
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