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ON VIBRATIONS OF RECTANGULAR
PARALLELEPIPEDS
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Abstract  An cxict, closed-form solution of the three-dimensional cquations of clasticity is given
for vibrations of rectangular parallelepipeds with traction-free faces.

LAME POTENTIAL FUNCTIONS

The problem of finding exact, closed-form solutions of the three-dimensional equations of
linear elasticity, for steady vibrations of homogeneous, isotropic, rectangular parallelepipeds
with all faces free of traction, was introduced by Lamé in 1852[1]. He exhibited a solution
of that type for a family of modes with locally equivoluminal deformation but, for the case
of coupled equivoluminal and dilatational deformations, he proposed a solution in which
normal components of traction remain on all six faces. Some progress was made toward
a solution with all faces traction free with the discovery, in 1960[2], of an exact, closed-
form solution for a family of coupled modes in bars of rectangular cross-section with the
four side-faces of the bars traction free. In this paper, that solution is extended to
accommodate a family of modes in rectangular parallelepipeds with all six faces free of
traction. Whereas the solution for the bars could be expressed in terms of three Lame
potential functions, 18 are required for the parallelepipeds, as follows:

@ = A,siné,xsinnyysinl3z + A, sinéyxsing,ysin{,z

+ Aysinéyxsinn,ysind,z

H, = B,sin&;xcosnycos {3z + Cysinfyxcosnsycos(,z

+ D,sin&,xcosnyycos;z + E siné,xcosnycos,z

+ F,siné,xcosn,ycos sz
H, = Bycos,xsinnzycoslyz + Cycos & xsinn;ycoslyz
+ D, cosEyxsinn, ycos {3z + E;cos & xsinn,ycos (32

+ Fycoséyxsiny,ycos(,z

H, = B,cos &, xcosn,ysin{3z + CycosE3xcosn,ysin{sz
+ Djcoséxcosnsysing z + EycosEyxcosn,ysinl,z
+ Fycosé,xcosnsysin{,z 0))
in which a time-dependent factor €' is omitted.
The Lamé functions are governed by the equations
v¥V3p + 0?9 =0

U%VZ(HX,H’,, H;)+ wz(Hxa Hy’Hz) =0 2
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where v, and v, are the velocities of dilatational and equivoluminal waves, respectively, in
an infinite medium

vi=(A+2up,  vi=ulp 3
and A and u are Lamé’s constants of elasticity, related to Poisson’s ratio, v, in a form to

be cmployed subscquently
I — pf(A 4 20 = 1/2(1 —v) = &2 )
Upon substituting eqn (1) in eqn (2) we find the requirements
G+m+8=8+n+8=8+n+3 =0}
B+m+G=8+n+0=+n+0
=G+m+G=8+n+3=8+n+ 3=’

DISPLACEMENTS AND STRESSES
The components of displacement are related to the Lamé functions according to
u = 0p/0x + 0H,/0y — 0H [0z
v = d¢/dy + 0H,/0z — 0H,/0x
w = 0p/0z + 0H,/0x — 0H,/0y (6)

whence

u=A,&;,cosé,xsinnzysinlsz + (C,{3 — Byns)cos &, xsinn,ysin {3z
+ A€ cosEyxsinyg,ysinyz + (D03 — Cony)cos Esxsing, ysin,z
+ Aj&ycosEyxsinn,yysin(yz + (B3l; — Dans)coséxsingaysinz
+ Ey{ycos&yxsinn,ysin sz + Fyl;cosEaxsing,ysin,z

— E3n,cos Esxsing,ysinl,z — Fanscos Exsinnaysin{,z

v = Ajn,sinéax cosnyysin {4z + (Cy€3 — Byly)siné;xcosn, ysin{,z
+ Aznysin§yxcosnyysin{sz + (D33 — Caly)sin€3xcosnyysin{,z
+ Aynssinéyxcosnsysin {3z + (B&; — Dy {5)siné x cosnsysin sz
+ E;&ysinéyxcosn,ysin,z + Fassinéxcosnsysind,z

— E{,siné,xcosnyysind,z — Fi{5siné,xcosn,ysinsz

w = A3{,sin&3xsinnzycos{,z + (Cany — Byés)sinésxsinngaycos{,z
+ A{3sing;xsinnzycos {3z + (Dyns — Ci&y)sin g xsinnyycos 3z
+ A,y{5sin&sxsinn,ycos {3z + (Byny — Dyés)sinésxsing, ycos {5z
+ E nysin&,xsinnyycos {3z + Fynysinéyxsinn,ycos 4z

— E ¢,siné xsinn,ycos {3z — Fyéasinéyxsinng,ycos sz, )
The components of stress are calculated from the displacements by

Oy = AN + 2u6u/0x, gy, = Wow/0y + dv/0z)
o,, = AA + 2udv/dy, Ox; = W(0u/dz + Ow/dx)
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0., = AA + 2udw/oz, oy, = H(0v/0x + dujdy) (8)

where A = du/0x + dv/dy + dw/dz.
Then, the normal components of stress are given by

P o = —[A(&] — nd ~ () sin&yx + 2AC, {5 — Byma)d; sin g x] sinnaysin sz
—[Ay(n} — 213 + & — (3)sin&ax + 2E,{3¢, sin E,x] sinn,ysin {3z
—[A5(CF — 203 — n3 + &3 sin &3x — 2F 3¢, sin &px]sinnsysinpz
~2[Dy{3 — CynyJ¢ssinéaxsing,ysin{z
—2[B;3{; — D3n;3)éssinézxsinn,ysind; 2
—2[F3ly — E3n,)Essinéaxsing,ysinl,z

play, = —[A:(&} — 283 — {3 + nd)sinnsy — 2F {yn, sinnay] sin &oxsin {5z
—[Axn — 83 — EDsinmyy + 2Coés — Bola)n, sinnyy]sin&axsin sz
~[A3(% — 203 + n3 — &D)sinnsy + 2E3¢3n; sinnzy]sin Eaxsind,z
—2[D3&; — C3{ Inssinéyxsinn,ysin;z
—2[B¢, — Dy{3]Inssin & xsinnsysin {4z
—2[F3&, — E{{,]nasin&,xsinnaysin{,z

plos = —[A1(&T — 283 + {3 — nd)sin {3z + 2E n3{,sin (2] sin &pxsinnsy
— (A} — 203 — & + (D)sin{yz — 2F, €50, sin (2] sin Eyxsinn,y
—[A3(T — 0 — E3)sin{pz + 2Cyny — B3&s)y sinlyz]sin{axsinnsy
—2[Dyn3 — Ci&,J{3sin & xsinn,ysin {2
—2[B,n, — D3&;5]¢;sinEyxsinn ysin{,z
—2[Fn; — E;&;]03sin,xsinn,ysin {3z 9

and the tangential components of stress are given by

pla,, = {24,{mysinéox + [Dy(nf — £3) + B1&1{5 — C1éims]sin & x} cosnzycos 3z
+ {24503, sin &3x — [Ez¢om; — Fi(nd — ()] sin &yx} cosn,yycos {2
+ {2430y sin &3x + [F36202 + Eq(n3 — 3] sin&,x} cosnzycos {,z
+ [By(n} — {3) + C;&303 — Da&an IsinEyxcosn,ycos L3z
+[Ca(n3 — {3) + D3&3ly — By&ans)sinEyxcosnaycosyz
+(E3&38, — Féan,)sinéyxcosnyycos sz

p0 = {24,805 sinnay + [Finads + Eo(5 — £3)]sinnay} cos Epxcos{sz
+{2A4,¢3(3sinn,y + (D83 — &3) + Bani&s — Cany{3]sinn, y} cos &3x cos {4z
+{24,3850;sinnsy — [Esnals — F2(7 — {3)]sinn,y} cosEax cos{yz
+ [B3((3 — %) + Canss — Dansly]cos 3x sinnaycos sz
+[Ci((3 — &) + Dinyé, — Binslslcos & xsinnsycos sz
+(E 03¢, — Fan3(z)cos &yxsinnaycos {2
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p o, = {24 Emssin{sz — [E {38, — Fa(& — nd)sin,z} cos E,x cos sy
+{24,&3m;8in {3z + [Falany + Es(&3 — n3)]sin{,z} cos Eyx cosnyy
+ {24;383m3sin{yz + [D4(E3 — n3) + Byluns — C3L1&s]sin {2} cos E3x cosnyy
+[B:(&f — n3) + Cilsms — D1 (3¢ Jcos & xcos ny sin{sz
+[Ca(83 — n]) + Dalany — Byls&s]cosEaxcosn,ysinfsz
+(Exl3n; — Fi{38;5) cos & x cos nyysin {yz. (10)

BOUNDARY CONDITIONS

The conditions for the boundaries, x = +a, y = +b, z= +c¢ of a rectangular
parallelepiped, to be traction free are

Gy =0, =0,,=0 on z= *c (1
The tangential components of traction vanish on the boundaries if
i = lm/2a, n; = m;n/2b, {i=nmn/2c (12)

for i =1, 2, 3 and [;, m;, n; odd integers. These integers give the integral numbers of half
wavelengths of displacement between opposing faces of the body. From eqns (3)—(5) and
(12), we find a frequency ratio Q given by

KIQP = 1} — B = a¥(m? — md)b? = a*(n] — nd)/c?

=3 — I = a¥(m} — mj)/b* = a*(n} — nj)/c* (13)
where
Q? = w¥w?,  w?=nvida (14)

We note, from eqn (13), the requirements

B-B=B-02 mi-mi=mi-mi, n?®—ni=ni-ni (15)
and the results
2 2 2 2 2 2 2 2 2 2
b_=m1—mZ_mz—m3 C___nl—nzznz-n3 (16)
a? B-n B2-3’ a? B-1B BE-5

Although the Lamé functions in eqn (1) produce displacements antisymmetric with
respect to all three coordinate planes, symmetry with respect to any or all of the
coordinate planes would result from interchange of appropriate sines and cosines. Then the
corresponding odd integers, among [;, m;, n;, would be replaced by even integers. Thus,
both the frequency, in eqn (13), and the dimensional ratios, in eqn (16), depend on differences
between the squares of two integers, say P; and @;, Q; > P;, both odd or both even. Such
differences are positive integral multiples of 4
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Q?—P!=4N, N=123... (17)

It was shown in Ref. [2] that all such P; and Q, are given by
P,=N/M;—M;, Q.=N/M,+M, M;=123.<N"2 (18)

These results gave the integers eligible for use in Ref. [2], but here there is the additional
restriction, eqn (15). Thus, only those values of N are admissible that give at least two
pairs of integers, say Q;, P; and Q;, P;, which satisfy

Q}-Pl=0}-Pi, P=0Q, (19)

In the range 0 < N < 1000, only 34 values of N, as listed in Table 1, give Q and P, from
eqn (18), which satisfy eqn (19). One of them (N = 210) gives two such combinations and
another (N = 840) gives three.

For the boundary conditions on the normal components of traction to be satisfied,
the six expressions in brackets in each of o,,, 0,,, 6,,, in eqn (9), must vanish on x = +aq,
y = 1b, z = =c, respectively. These conditions constitute a system of 18 simultaneous,
homogeneous equations on the 18 constants A4, ... F,, the solution of which is

A, a33831€;3€2; f32f13

] __a:uexzfls
- )
Ay aya3er3e31 f12/23

a;3€31f23

Ay _
A

B,/A, = —ay ¢3,d51/A,,  Cy/A; = —ay,bydsy /A
B,/A; = —a33¢12d32/4,, Cy/A; = —ay3b3,dy2/A,
B;3/A3 = —a33¢;3d,3/As, C3/A3 = —a33by3dya/A;
Dy/A| = ay1byic3,/A,, Ay =byic3,day + byycyqdsy
D,/A; = ay3b3,5012/4,, Ay = byy10da; + b3sCaad;s
D3/A3 = az3byacs3/As, Aj = b33c23d;y;3 + by3C33da;

E\/A, = —aj, /ey, Fi/A; = —ay/fn
Fy/A; = —ay,fey,, Fy/A; = —as,/fs2 (20)

E3/A; = —ays/eys, F3/Ay = —ay;s/f1a
provided that

BB — A3)03 — B3) + mi(n3 — BYA3 — i)
+ A3(3 — A3XAS — hd) + Birh3ng = 0 @1

where
li=lja, w=m/b, A =njc (22)
and

ay = (E - mg - ﬁg)(_ 1)(‘2_13),2’ bll = _zrlmsy €11 = ZﬁJ,
alz = ('ﬁi - zmg + P3 - ﬁgx— l)('3“2)/2’ elz = 2ﬁ3rz
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a3 = (ﬁf - 2ﬁ§ - rﬁ% + E)(* 1)“3_12”2, f13 = _2T2'ﬁ3

dyy =fy, ¢ = =iy, by =1y, diy= —my, fi; ="y, e;3= —1i,
a;, = (E - 213 - ﬁ§ + ’ﬁ:za)(“’ 1)('"3—"'2)/2, Ja1 = —2myh;,

A, = ('ﬁ% - ﬁ§ - E)(_l)(mz—m,)ﬂ’ byy = —2mMyAs, ¢33 = 2T3m1

a3 = (A} — 283 + md — B)(— 1™ 7", ey5 = 2D,

dyy = Ts, €23 = —Mfy, by = Tx, dyy = —fs, fa3 = Tz, € = —Hh

a3, = (I — 20 + A3 — M3 = 1), ¢y = 2rishiy

a3, = (h} — 203 — B + A}~ 1™ "2, fy, = — 2],

a3y = (A2 — M2 — BY(— 1)~ byo = — 28,15, ¢33 = 2h3h,

a3 =My, c3y = =, byy =thy, dy; = =13, fo, =1hy, e3, = =15 (23)

EXAMPLES

It remains only to select differences of squares of integers, from eqns (17) and (18), to
produce the frequencies according to eqn (13) and dimensional ratios according to egn
(16)—subject to restrictions (15), as in Table 1, and, finally, eqn (21).

The density of modes and shapes of parallelepipeds, included in the solution, is low
in comparison with that in the solution for the bar in Ref. [2]. There, with no restriction
on length, the allowable ratio of width to thickness of a bar was the square root of the
ratio of any two of the Q? — P? differences calculated from eqn (18). In the range
0 < N £ 1000, there are 3551 such differences. But, in the present solution, only 37
combinations of two of them, as listed in Table 1, are allowed as a result of eqn (15). Three
such combinations are required for the I;, m;, n; of any solution and the admissibility of
such triplets is severely restricted by eqn (21). That equation may be simplified by taking
any onc of the differences, say M3 — A2, equal to zero. As a result, eqn (21) reduces to

b%/a* = 2m3/13 (24)
and, since we have taken b?/c? = m3/n3, we find
c?/a? = 2nd/13. (25)

Then, with eqn (16), we can write 2(3/13 — 1) = m3/m3 — 1 = n3/n — 1. Thesc relations
facilitate the selection of [, m;, n; from Table 1 or its extension to
higher N.

A few examples of modes in square and rectangular plates and bars are given below.
Square, thick plate:
Ny= 30, 5L=17, L=13 I;1=17
N, =540, m; =69, m,=51, my=21
Ny =540, n, =69, n,=51, ny=21
a*:b*:c? = 1:18:18
Kk2Q? = 120.



Square bar:

Rectangular bar:

Rectangular plate:

On vibrations of rectangular parallelepipeds

Table 1. 4N = Q2 — P? = Q2 — P2,

N 9 P P;
6 7 5 1
24 14 10 2
30 17 13 7
54 21 15 3
60 23 17 7
84 3 25 17
96 28 20 4
120 34 26 14
150 35 25 5
180 49 4] 31
210 47 37 23
210 41 29 1
216 42 30 6
240 46 34 14
270 51 39 21
294 49 35 7
330 7 61 49
336 62 50 34
384 56 40 8
480 68 52 28
486 63 45 9
504 79 65 47
540 69 51 21
546 97 85 71
600 70 50 10
630 73 53 17
720 98 82 62
726 77 55 11
750 85 65 35
756 93 75 51
840 127 113 97
840 94 74 46
840 82 58 2
864 84 60 12
924 89 65 23
960 92 68 28
990 119 101 79
N, =750, ;=85 [,=65 [1,=35
Nz = 60, ml = 23, m2 = ]7, m3 = 7
N3= 60, n, =23, n2= 17, n3— 7
a*:b*:c? =25:2:2
K2Q3(c?*/a*) = 240.
Nl = 30, 11 = 17, 12 = 13, 13 = 7
N2 = 60, m, = 23, my = 17, m,; = 7
N3 = 540, nl = 69, nz - 51, n3 = 2‘1
a*:b*:c* =1:2:18
xk2Q? = 120.
N, =750, [I,=85 1[,=65 I3=35
N, =540, m, =69, my=351, my=21

1429
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Ny= 60, n =23 n,=17, ny= 7
a®:b*:c? = 25:18:2
K2Q%(c?/a?) = 240.
As mentioned earlier, some or all of the sines and cosings in the Lamé functions may

be interchanged with the result that some or all of the [;, m;, n; would change from odd
to even integers.
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